

2019 SOUTH EAST ASIA SUGARCANE SUMMIT JULY 7-10, 2019 | KHAO YAI, THAILAND

Advancing for a better tomorrow

NIRS Technique for Online Sugar Content Monitoring of Sugarcane on the Elevator Conveyor

Kittisak Phetpan & Vasu Udompetaikul, Dept. of Agricultural Engineering, KMITL

PA in Sugarcane

Precision Agriculture

A management strategy that uses information technologies to bring data from multiple sources to bear on decisions associated with crop production. (National Research Council, 1997)

Soil Mapping

Crop as a function of land and environment. Spatial and temporal variation considering. Farmers could make better decisions and actions based on information and situations ... and enjoy farming.

https://sydney.edu.au/agriculture/pal/about/what_is_precision_agriculture.shtml

Yield Monitoring

- PROFIT = (Yield Map AsApplied Map) Other Costs
- Techniques
 - Chopper & elevator power measurement
 - Volumetric measurement
 - Machine Vision
 - Mass measurement

Yield Map: Enough?

PROFIT = $\int (Yield Map - AsApplied Map) - Other Cost$ Mass CCS Harvest Scheduling based on

- Yield & maturity
- Yield & CCS

NIRs Concept: What is NIR?

Source: https://www.khanacademy.org/science/physics/light-waves/introduction-to-light-waves/a/light-and-the-electromagnetic-spectrum

NIR Spectroscopy

Sucrose's NIR Spectrum

- Golic et al. 2003
- http://www.impublications.com/content/introduction-near-infrared-nir-spectroscopy

wavelength, nm

NIRs Applications in Sugarcane

Wavelength, nm	Measurement mode	Sample form	Prediction accuracy		
NIR (1445 - 2348)			°Brix (R ² = 0.91)		
	Reflectance	Fibrated	$CCS(R^2 = 0.91)$		
			Fiber content ($R^2 = 0.89$)		
			Pol (R ² = 0.96)		
NIR (1445 - 2348)	Transflectance	Clarified juice	°Brix (R ² = 0.97)		
			$CCS (R^2 = 0.97)$		
			Pol ($R^2 = 0.98$)		
MIR (8000 - 12500)	Reflectance	Raw juice	Pol (R ² = 0.98)		
NIR (1111 - 2222)	Transmittance	Raw juice	Pol (R ² = 0.96)		
NIR (1111 - 2500)	Reflectance	Fibrated	Pol (R^2 for the calibration model = 0.93)		
NIR (1100-2500)	Pofloctanco	Fibrated	Pol (R ² = 0.96)		
	Reflectance		°Brix (R ² = 0.97)		
			Fiber content ($R^2 = 0.90$)		
NIR (1100 - 2500)	Transmittance	Clarified juice	°Brix (R ² = 0.99)		
			Pol ($\dot{R}^2 = 0.99$)		
NIR (1100 - 2498)	Reflectance	Fibrated	Pol (SEP = 0.21%)		
VNIR (600 – 1100)	Transmittance	Stalk	Pol (RMSEP = 1.1% Pol)		

Source: Nawi, et al. (2014). "In-field measurement and sampling technologies for monitoring quality in the sugarcane industry: a review." Precision Agriculture, 15(6), 684–703)

NIRs Applications in Sugarcane

CCS, Pol, °Brix, %Fiber

CCS, Pol, °Brix

Source: Nawi, N.M. (2014). "Development of new measurement methods to determine sugarcane quality from stalk samples." PhD dissertation, University of Southern Queensland

NIRs Applications in Sugarcane

CCS, Pol, °Brix, %Fiber

(only in full-range NIR)

Pol

Nawi, N.M. (2014)

Our Project

Motorized Fertilizer Applicator for VRT

Tobse New Holland

1 1

Variation Maps ?

Source: http://manuals.deere.com/omview/OMNW00271_19/OU92976_00000A5_19_16MAY06_1.htm

The Setup

Schematic of the online measurement system

Experiments

Results

Pro Processing	Calibration		Prediction			
Fie-Fiocessing	LVs	R ²	RMSECV	R ²	RMSEP	RPD
MA + SNV	4	0.807	0.3	0.785	0.3	2.16

Note: LVs is Latent variables, MA is moving average method, SNV is Standard normal variate.

Conclusion

- The NIRS concept could be applied for sensing the sugar content of sugarcane billets on a running elevator conveyor (KK-3 variety).
- More sugarcane varieties and wider range of sugar contents must be covered for a better predictability power.

Future Work

- Improve acquisition rate and quality
 - Narrower / smaller FOV
 - Smaller gap between probe and samples
 - High efficient filtering techniques
- Include trashes
- Integrate with the yield monitoring system
- Integrate with GNSS for the field variation map
- Introduce CCS (after prototyping)
- Study for simpler indexes (CCS Signature)

